553 research outputs found

    Analysis of Cooperation in Undertaking Business Between Chinese Software Outsourcing Vendors

    Get PDF
    Chinese outsourcing vendors attach great importance on cooperation in undertaking business between each other now. Cooperation in undertaking business can help enterprises to obtain complementary resources or capabilities, in order to achieve breakthrough in expanding market. Combined with survey data, this article analyzes the causes of cooperation in undertaking business between outsourcing vendors, and current situation about the cooperation is discussed. On this basis, several suggestions are further put forward.Key words: Software outsourcing; Outsourcing vendor; Cooperation; Undertaking busines

    Mark ratio modulation over pulse position modulation

    Get PDF
    Orthogonal modulation superimposes non-amplitude-modulated signals on Manchester coded or pulse position modulated amplitude shift keying (ASK) signals, allowing two traffic flows with different bit rates to be modulated on the same wavelength channel, and hence improving spectrum efficiency. Inspired by the orthogonal modulation, this paper proposes a novel modulation format, i.e., mark ratio modulation over pulse position modulation (PPM), which utilizes the mark ratio difference between the PPM symbols and the inverse PPM symbols to deliver an overlaid signal. Better than traditional orthogonal modulation, in the mark ratio modulation over PPM, both low-speed and high-speed traffic flows are modulated by ASK with no need to sacrifice the extinction ratio, while keeping the reception simple and easy. According to theoretical analysis and test, we found 4PPM is a good option, which can balance the trade-off between the PPM signal\u27s effective bit rate and the mark ratio modulated signal\u27s quality

    On the Propagation of a Geoeffective Coronal Mass Ejection during March 15 -- 17, 2015

    Full text link
    The largest geomagnetic storm so far in the solar cycle 24 was produced by a fast coronal mass ejection (CME) originating on 2015 March 15. It was an initially west-oriented CME and expected to only cause a weak geomagnetic disturbance. Why did this CME finally cause such a large geomagnetic storm? We try to find some clues by investigating its propagation from the Sun to 1 AU. First, we reconstruct the CME's kinematic properties in the corona from the SOHO and SDO imaging data with the aid of the graduated cylindrical shell (GCS) model. It is suggested that the CME propagated to the west ∼\sim33∘33^\circ±\pm10∘10^\circ away from the Sun-Earth line with a speed of about 817 km s−1^{-1} before leaving the field of view of the SOHO/LASCO C3 camera. A magnetic cloud (MC) corresponding to this CME was measured in-situ by the Wind spacecraft two days later. By applying two MC reconstruction methods, we infer the configuration of the MC as well as some kinematic information, which implies that the CME possibly experienced an eastward deflection on its way to 1 AU. However, due to the lack of observations from the STEREO spacecraft, the CME's kinematic evolution in interplanetary space is not clear. In order to fill this gap, we utilize numerical MHD simulation, drag-based CME propagation model (DBM) and the model for CME deflection in interplanetary space (DIPS) to recover the propagation process, especially the trajectory, of the CME from 30RS30 R_S to 1 AU. It is suggested that the trajectory of the CME was deflected toward the Earth by about 12∘12^\circ, consistent with the implication from the MC reconstruction at 1 AU. This eastward deflection probably contributed to the CME's unexpected geoeffectiveness by pushing the center of the initially west-oriented CME closer to the Earth.Comment: 10 pages, 5 figures, 1 table, accepted by JGR - Space Physic
    • …
    corecore